D8 polytope - определение. Что такое D8 polytope
DICLIB.COM
Языковые инструменты на ИИ
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое D8 polytope - определение


D8 polytope         
  • 160px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
WIKIMEDIA LIST ARTICLE
List of D8 polytopes
In 8-dimensional geometry, there are 191 uniform polytopes with D8 symmetry, 64 are unique, and 127 are shared with the B8 symmetry. There are two regular forms, the 8-orthoplex, and 8-demicube with 16 and 128 vertices respectively.
Aurora D8         
AIRLINER CONCEPT
D8 (Aircraft)
The Aurora D8, also known as the D8 Airliner, is an airliner concept under development as of mid 2017. The project was initiated in 2008 by Aurora Flight Sciences, the Massachusetts Institute of Technology (MIT) and Pratt & Whitney under NASA's sponsorship of $2.
Integral polytope         
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
CONVEX POLYTOPE WHOSE VERTICES ALL HAVE INTEGER CARTESIAN COORDINATES
Convex lattice polytope
In geometry and polyhedral combinatorics, an integral polytope is a convex polytope whose vertices all have integer Cartesian coordinates. That is, it is a polytope that equals the convex hull of its integer points.